

Monitoraggio biologico dell'esposizione ad arsenico

Gruppo di Lavoro 4 "Biomonitoraggio Umano"

As

33

15, (Va)

R 23/25

S ½ - 20/21-28-45

metalloidi (non metalli)

cristalli fragili, grigi con

Simbolo

Gruppo

Periodo

Aspetto

Frasi R Frasi S

Serie chimica

Numero atomico

ARSENICO

G:\schede\arsenico.pdf

htp://gimk-fem.i.

G hal Med Lay Brg 2009; 31:1, 5-32

© Pl M.E. Pavia 2009

INTERFERENTIENDOCRINI SCHEDE MONOGRAFICHE

3 ARSENICO

El Sturenig¹, C. Minoia², M. Zanellato¹, A. Masetti³, E. Leoni², C. Sattani², G. Biamont⁴, A. Ronchi². L. Cason i¹, S. Signorini⁵, M. Imbriani⁶

- Istituto Superiore per la Prevenzione e la Siburezza sul Lavoro
- Elpartimento Intraliazioni di Produzione e Insedementi Antropioi, Roma
- ² Laboratorio di Misura Ambientali e lossicologiche "Fondazione Salvatore Marigen", Paus.
- ⁷ Laboratorio di Espressione, Georga-Michaetrays i Isperiale Perliatrico Hambiro Besti, Home.
- ⁴ Istituto di Cienetios Molechiare, Consiglio Nazionale della Hicarcha, Passa.
- ⁵ Eirettore Scientifico Centro di Ricerca iSPESL "Fondazione Salvatere Maegen", Fana
- ^e Eirettore Scientilico Centrale "Fondazione Schotore Maugerf", Cattedro di Medicina del Lavoro, Università degli Studi di Pavia

DIFFUSIONE UBIQUITARIA

(WHO 2001)

Acque oceaniche:

 $0.3 \mu g/L$

Aree rurali: 0,007-28 ng/m³

1-40 mg/Kg

Acque continentali: Aree urbane:

3-200 ng/m³ $0.05-1.00 \mu g/L$

aspetto metallico, inodore 74,9 Massa atomica -3, 0, +3, +5Stati di ossidazione Punto di fusione 814 C 615 C Punto di ebollizione insolubile Solubilità in acqua Classe di cancerogenicità Gruppo mutageno per le cellule germinali (DFG 2004)

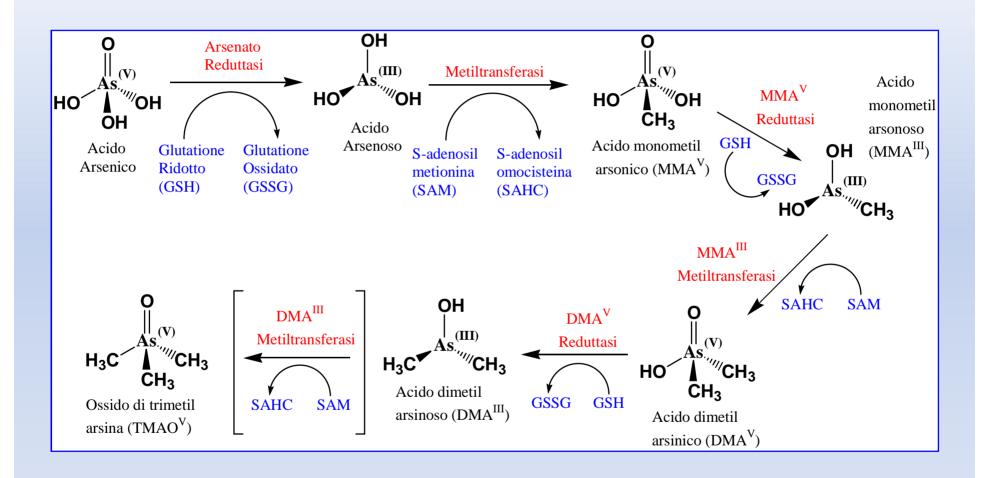
SORGENTI ESPOSITIVE

dieta

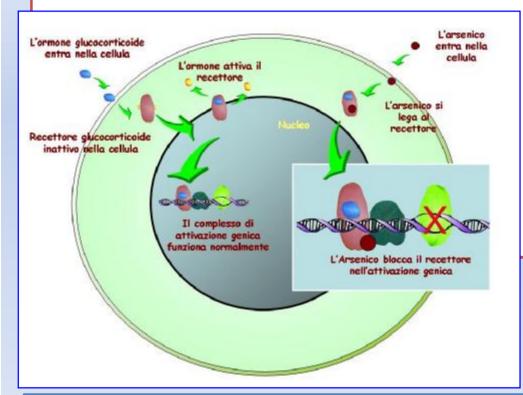
Intake Giornaliero Tollerabile Provvisorio (PTDI) per As inorganico:

2,1 μg/Kg/die (Joint Fao/WHO, 1989).

consumo di acqua potabile



• insediamenti antropici nei pressi di fonderie


- suolo contaminato
- antiparassitari contenenti As

METABOLISMO dell'As

MECCANISMO d'AZIONE dell'As

Altera la regolazione genica tramite interazione con i recettori degli ormoni steroidei [glucocorticoidi (GR), mineralcorticoidi (MR), progesterone (PR) e androgeni (AR)] (Bodwell, 2006; Bodwell, 2004; Kaltreider, 2001)

Inibizione selettiva della trascrizione del DNA che in condizioni normali dovrebbe essere stimolata dal complesso glucocorticoide-GR

IL MECCANISMO DI REGOLAZIONE GENICA E' ANCORA SCONOSCIUTO

Meccanismo di interferenza dell'As con il complesso glucocorticoide-GR (Modificato da Kaltreider, 2001).

• effetti simili sul **TR** (*Thyroid Hormone Receptor*) e sul **RAR** (*Retinoic Acid Receptor*) (Davey, 2008)

NUOVI TARGET: proteine? pathway?

- Studi epidemiologici condotti su bambini esposti hanno evidenziato **effetti sulle funzioni cognitive** (Wasserman, 2004)
- Capacità dell'As di agire sul DNA inducendo cambiamenti epigenetici per cui non si escludono effetti a lungo termine (Liu, 2006; Shen, 2006; Waalkes, 2004)

Tecniche analitiche

1. Monoelementari

spettrofotometria di assorbimento atomico con sistema di iniezione di flusso accoppiato

a tecnica degli idruri (FI-HG-AAS)

LOD FI-HG-AAS: µg/L

2. Multielementari

spettrometria di massa con sorgente a plasma induttivo (ICP-MS)

LOD ICP-MS: ng/L

DRC-ICP-MS

Modello ELAN DRC II (Perkin Elmer Sciex Instrument)

VANTAGGI

- elevata sensibilità
- adatta a studi di biomonitoraggio
 (analisi simultanea di più elementi)
- determinazione degli isotopi dei singoli elementi in base al rapporto m/z
- preparativa del campione meno laboriosa vs altre metodiche
- linearità in ampio range dinamico

La sensibilità, il livello di doppie cariche, degli ossidi e il disturbo di fondo sono state verificate mediante:

Daily Performance Report

(ELAN 6100 DRC SETUP STAB MASSCAL SOLUTION)

§ 24 Mg>6000 *cps*/1 ppb

§ ¹¹⁵In>30000 *cps*/1 ppb

§ ²³⁸U>20000 *cps*/1 ppb

§ Ba²⁺/Ba<3%

§ CeO+/Ce<3%

§220<2 cps

§ RDS<2%

II PROBLEMA delle INTERFERENZE

Radiofrequenza

Interferenze di tipo **spettrale poliatomiche** (es ⁵⁸Ni su ⁵⁸Fe)

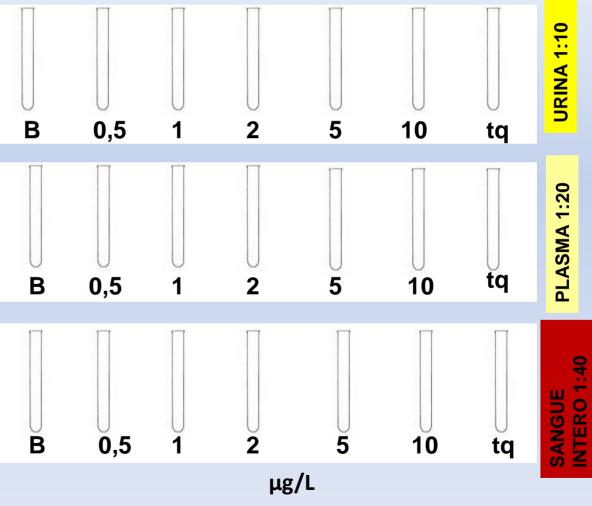
- Flusso Gas
- DRC

Interferenze di tipo **spettrale isobariche** (es ⁴⁰Ar¹⁶O su ⁵⁶Fe)

Gas	Gas A	Gas B		
NH ₃	0,5	0		
CH ₄	0	0,65		

Parametri strumentali della DRC espressi in mL/min

- Pretrattamento campione
- Curva di taratura mediante standard addition


Interferenze di tipo **non spettrale** (effetti interferenti da matrice)

CURVE di TARATURA

Metodo delle aggiunte standard alla matrice

- Soluzione standard multielemento ICP/MS CALIB STDS (10 mg/L)
- Soluzione standard multielemento STD III (10 mg/L)
- Mercury ICP/MS standard (10 mg/L)
- 4. Certipur (10mg/L)

0 0 0-00 0 0 0 0 0 0 0 0 0

TRATTAMENTO dei CAMPIONI

SANGUE INTERO (n=233) e PLASMA (n=230)

- 1. 1 mL plasma/sangue intero
- 2. $3.5 \text{ mL HNO}_3 65\% \text{ Suprapur}$
- 3. $0.5 \text{ mL H}_2\text{O}_2 30\% \text{ Suprapur}$
- mineralizzazione mediante forno a microonde MARSXPRESS (CEM Corporation)
- 5. raffreddamento
- 6. diluizione 1:20 (v/v) (plasma) 1:40 (v/v) (sangue intero) con 1% HNO₃

URINA (n=149)

- 1. omogenizzare
- 2. 1 mL urina
- 3. diluizione 1:10 con 1% $HNO_3(v/v)$

ADEGUATEZZA del metodo verificata mediante

Standard Reference Material

(SRM):

- Seronorm Trace Element Whole Blood L-1
- Seronorm Trace Element Serum L-1
- Seronorm Trace Element Urine

VALIDAZIONE del METODO

ü Buona linearità delle curve di taratura nell'intervallo di concentrazioni

(coefficienti di correlazione: 0,9998-0,9999)

ü LOD=3*SD bianco matrice (20 repliche)


ü Recupero=94-102%

ü Accuratezza: stimata usando 3 tipi SRM

Precisione: 1,5-9%

Esattezza: 94-102%

GRAZIE

As urinario

Autore, anno	Area geografica	Conc min (µg/L)	Conc max (µg/L)	Conc Mediana (µg/L)	n	Età soggetti	Anno campionamento
Apostoli, 1999	Italia	5	210	10,6	39		1998
Caldwell, 2009	USA	7,2	9,6	8,3 media geometrica	2:557	6-20	2003-04
Meza, 2004	Cile	4	161	32,7	67	10-85	1999-00
Caceres, 2004	Messico	46	90,6	64,5	43	19-75	2001
Hata, 2007	Giappone	73,9	225,9	141	210	43,7	2004-06
Rahman 2001	India	10	3'147	180	86.000		1989
Chowdhury, 2000	Bangladesh	24	3.086	280	18'000	11-70	1989
Pi, 2002	Cina Mongolia			71	10	42	1984

- 1. Presenza nell' ambiente
- 2. Dati chimici e fisici
- 3. Sorgenti espositive per la popolazione generale
- 4. Fonti ambientali
- 5. Metabolismo e specie chimiche
- 6. Contributo della dieta
- 7. Tossicità
- 8. Suscettibilità individuale
- 9. Cancerogenicità
- 10. Utilizzo di composti di arsenico nella terapia antitumorale
- 11. Meccanismo di azione dell'As come interferente endocrino
- 12. Studi di espressione genica
- 13. MicroRNA
- 14. Metodi di analisi
- 14.1 Determinazione di arsenico totale e speciazione di forme organiche
- 14.2 Influenza della conservazione e della fase preparativa del campione
- 15. Arsenico e biomarcatori
- 16. Concentrazioni di riferimento dell'intake alimentare
- 17. Valutazione dei valori di arsenico in liquidi biologici
- 18. Valori di As in soggetti esposti
- 19. Conclusioni
- 20. Bibliografia