

Antonio Olita, ISAC-CNR antonio.olita@cnr.it

HEAT

HARMFUL EFFECTS OF ANTHROPOGENIC HEATWAVES ON LAGOON BIVALVES, FISHERMEN, AND ECOSYSTEMS

THE DSSTTA CALL «STUPIRE»

4 THEMATIC AREAS

- Resources: from territorial resources to autonomy
- Territories: integrated and sustainable management
- **Relations**: the health of ecosystems
- **Changes**: preparedness, management, and adaptation to unwanted changes

KEY POINTS OF THE CALL

Bold and unconventional research Focus on strategic topics,

including:

- •Adaptation to climate change
- Ecological transition and sustainability
- Society—environment interactions
- Promotion of new approaches and inter-institutional collaborations

CALL RESULTS

- Over 30 projects submitted
- 27 scored above 70/100
- 5 projects funded
- PHEAT is one of the 5 selected, with a strong transdisciplinary component: physics, climate, ecology, biology, economics, health

THE CHANGING CLIMATE

INCREASE OF EXTREME EVENTS...WHY DO?

Consiglio Nazionale

delle Ricerche

HEATWAVES ...

Prolonged periods of extreme heat, exceeding climatological thresholds of temperature and duration

Simolo and Corti, 2022

...MARINE HEATWAVES (as defined in Hobday et al., 2016)...

Hoolbrook et al., 2020

Smith et al. 2022

...AND Sediment HW (local scale)

Tassone and Pace, 2024

Progetto Heat, 16/07/2025 - Call STUPIRE, Kickoff Meeting

MHWs IN MEDITERRANEAN SEA

Capotondi et al. 2024

THE SCIENTIFIC AND TECHNICAL CHALLENGE: local scale and local effects

SANTA GILLA LAGOON

- √ 1300 ha
- ✓ Ramsar SITE (D.M. September 03, 1980)
- ✓ "Sito di interesse Comunitario" (Directive 92/43 CEE)
- ✓ Fishing Economy (Shellfishes and Fishes)
 and some Tourism
- ✓ Salt Production in the nearby "Saline Contivecchi"

THE TEAM 4 CNR INSTITUTES CNR + 1 UNIVERSITY DEPT

- Antonio Olita (PI), Leopoldo Fazioli, Valerio Lembo, ISAC-CNR
- Antonio Pusceddu (CO-PI), DISVA, UNICA
- Paolo Magni, IAS-CNR
- Elena Pagliarino, Monica Cariola, Greta Falavigna, IRCRES-CNR
- Marco Morabito, IBE-CNR

THE HEAT PROJECT

MANAGEMENT

ENVIRONMENTAL AND CLIMATIC MONITORING

MESOCOSM EXPERIMENTS

SOCIO ECONOMIC ANALYSIS

RESULTS INTEGRATION

WP1 - MANAGEMENT AND PREPARATORY ACTIONS

- Activities
- **Project kick-off**: planning, permits, and purchase of key equipment (data loggers, mesocosms, weather station, lab instruments, computing server).
- **Personnel recruitment** through public call.
- Stakeholder identification and initial engagement.
- **Sites selection** in the lagoon.
- **Internal meetings organization** and launch of reporting activities.

WP2 - ENVIRONMENTAL AND CLIMATIC CHARACTERIZATION

Activities

- Analysis of historical and current temperature data (air, water, sediment).
- Installation and calibration of the sensor network.
- Reconstruction of climatologies and MHW/SHW events.
- IPCC downscaling.
- Installation of a weather station
- Modelling and retrieval of atmospheric parameters.
- Environmental monitoring and distribution of *Ruditapes*. Mapping of current and future habitat suitability.

Methodology

Integrated use of sensor data, climatologies, and models. Spatial and seasonal approach to lagoon thermal dynamics. Integration with field-based biological activities.

WP2 - ENVIRONMENTAL AND CLIMATIC CHARACTERIZATION: WHAT DO WE HAVE RIGHT NOW

Progetto Heat, 16/07/2025 - Call STUPIRE, Kickoff Meeting

WP2 - ENVIRONMENTAL AND CLIMATIC CHARACTERIZATION: WHAT DO WE HAVE RIGHT NOW

WP2 - ENVIRONMENTAL AND CLIMATIC CHARACTERIZATION

WP3 – MESOCOSM EXPERIMENTS

Activities

Setup of experimental facilities. Collection and acclimation of target species. Thermal stress experiments. Analysis of physiological data.

Native

Allochtonous

Progetto Heat, 16/07/2025 - Call STUPIRE, Kickoff Meeting

WP3 – MESOCOSM EXPERIMENTS

How do Rising Temperatures Influence Organisms Living in Coastal Lagoon?

WP3 – MESOCOSM EXPERIMENTS

Respiration Rate (O₂mg L⁻¹ h⁻¹ gDW⁻¹) as a proxy for metabolism

Experimental Setup

Thermal Performance Curve Executive Steps

Step 1. Preliminary analysis

Step 2. «rTCP» metabolic performance model to temperature

Step 3. Best Performance Model among 24

Step 4. Transformation into Probability of occurence

Step 5. Metabolic Suitability maps

WP4 – SOCIO ECONOMIC ANALYSIS

Activities

- Analysis of heatwave impacts on local community livelihoods
- Survey of perceptions and viewpoints of key stakeholders
- Study of the local clam industry under thermal stress
 - K Effects on production and market dynamics
 - La Organizational, procedural, and economic changes
- Assessment of workers' well-being and health
- Identification of adaptation strategies (linked to Worklimate2.0)

Methodology

- **S** Qualitative research: interviews, focus groups, workshops
- Engagement with local administrators, decision-makers, businesses, and professional bodies
- Analysis of financial and economic data

WP5 – TRANSDISCIPLINARY ASSESSMENT OF THE IMPACTS

Activities

Integration of environmental, biological, and social data.
Assessment of combined impacts.
Final consultation with stakeholders.
Development of outreach materials and recommendations

Methodology

Cross-disciplinary analysis.
Participatory approach.
Translation of results into tools useful for policy, adaptation, and lagoon governance.

Thanks for your attention!!!

A cura di Antonio Olita - antonio.olita@cnr.it